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The Korteweg Theory of Cappilarity and
the Phase Transition Problems *

Harumi Hattori
Department of Mathematics

West Virginia University
Morgantown, WV 26506

Abstract

In this paper we first summarize the earlier results on the slow motion in the

Korteweg theory of cappilarity in the one-dimensional case and show some numerical
results. In the multidimensional case we discuss the existence of local solutions to
the system of equations for compressible fluids of Korteweg type.

1 Introduction

In order to model the capillarity effect of materials, Korteweg [121 formulated a constitutive
equation for the Cauchy stress that includes density gradients. It turns out that his theory
is useful to discuss phase transition problems.

First, we discuss the one-dimensional isothermal motion. In this case the equation we
discuss is given by

(1.1) U. =a (Ux)z + vXt- f2UxXX, 0 < x < 1, t > 0.

where u is the displacement and u,.t and u terms represent the viscosity and the cap-
illarity effects, respectively. Typical boundary conditions come from either a soft loading
device or a hard loading device. Although the slow motion occurs in both cases, in this
note we discuss the soft loading case only for simplicity. The boundary conditions in this
case are given by

u(O, t) = 0, a(Uý) + Vu. - F2 XXXIX=l = P1
(1.2) u.(0,t) = 0, uTT(1,t) = 0.

The initial conditions are given by

(1.3) u(x,0) = f(x), ut(x,0) = g(x),

where f,g E H1(0, 1). The boundary conditions (1.2a) show that the stress P i3 applied
at x = 1. The boundary conditions (1.2b) are the natural boundary conditions for the
corresponding variational problem.

"The author was supported in part by Army Grant DAAL 03-89-G-0088.
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In what follows, we assume that ar is given by Fig. 1.1. In this figure (0, a-] and
[Poc) are called the a-phase and the ,3-phase, respectively. They correspond to the
different phases of the material. The interval (a, !3) is called the spinodal region and
physically unstable. We denote by a, 3, and 03 the values of u_ at the intersections of
y = P and y -= o(u..) in the a-phase, the spinodal region, and the /3-phase, respectively.
The value of P for which areas A and B are equal is called the Maxwell line. We denote
by am, 3 M, and 3 ,M the values of a, /3, and 3, respectively, for which we have the Maxwell
line construction.

Y

An
P B

Sa a" 35 ,3'" ,

Figure 1.1

The capillarity term was first introduced by Korteweg [12]. Recently, various effects of
this term have been discussed. For example, Serrin [15], [16] reconsidered the Korteweg
theory and has shown the existence of steady profile connecting the a-phase and the /3-

phase. Slemrod [17] and Hagan and Slemrod [9] considered the existence of travelling wave
solutions. The static problems concerning the soft loading case and the hard loading case
have been discussed in [3] and [4], respectively. The dynamical aspects of these loading
cases are discussed in Hattori and Mischaikow [10] and Andrews and Ball [1].

In Section 2 we summarize the result in [11] about a slow motion of (1.1) resembling
the dynamics of (2.3) discussed in [71, [5], [2], and [8]. In Section 3 we show some numer-
ical examples of slow motions. In Section 4 we dsicuss the existence of local solutions to
the system of equations for two dimensional isothermal motion of compressible fluids of
Kort-w,-g type. The higher order terms of density (or the deformation gradient) in the

Cauchy stress tensor is not in general compatible with the classical theory of thermody-
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namics. Dunn and Serrin [6] introduced the concept of interstitial working and derived
the Cauchy stress tensor compatible with thethermodynamics. First, we summarize their
results and derive the system of equations. Then, we state the theorem for the existence
of local solutions.

2 Slow motions one-dimensional case

In this section we summerize the results in [2], [81, and [111. Multiply (1.1) by ut, integrate
in x and t, and then integrate by parts using (1.2). After dividing by f, we have,

(2.1) E[ul(t) + j u,,(x, s) dzds = E[u](0),

where

(2.2) E[u](t) = fo U2 + (W(u) - Pus) + U,"}(Xt) dx.

In (2.2) W(u.) is a primitive of a. For the remainder of the paper we shall assume that P
= cr(aM). This implies that W(u,) - Pu., will be double-well potentials with equal depth.
For the sake of simplicity we shall also assume that W(u=) - Pu, is given by (u, - 1)2.
The same conclusions will hold for more general non-linearities.

Observe that (2.1) is similar to that for the parabolic equation

(2.3) 1/,Vt = 2,,. - (,V3 
- V),

with either the homogeneous Neumann boundary condition

vT(O,t) = 0, vX (I, t) 0

or a Dirichlet condition

v(O,t) = a, v(1,t)=b, a,b = ±1.

In particular the energy relation for (2.3) is given by

(2.4) Ep[v](t) + - vvt(x,s)dxds =

where

(2.5) Ep[v](t) = jo{l(v2- 1)2 + V2}(X,t) dx.

Now we summarize the results of the slow motions for the parabolic equation. We
assume for the initial data of (2.3) that

(2.6) w (X) = lim v(1, 0)
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exists as a limit of L1 norm, where tw is a piecewise constant function taking only the values
±1, with exactly A' discontinuities at {x," , x,.} and we also assume that the initial data
satisfy
(2.7) E,[v'](O) < Nco + K2 exp(-K/c).

Then, we have

Lemma 2.1 Suppose the initial data for (2.3) satisfy (2.6) and (2.7). Then, for any T
satisfying 0 < T < Fve- exp(-K/c), we have

(2.8) sup Iv'(x, t) - v'(x,0) 1dx < (FG)1/2•½(s+I).
O<t<T0

Next, we summarize the results concerning the slow motions of (1.1). As the form of the
energy relation (2.1) resembles (2.4), we can expect to draw the same kind of conclusions
for (1.1). For this purpose we rewrite the energy E,[u] as

1 2
Ec[u] = E,[u] + Ep[u=], E,[u] = do.

We assume that the initial data for (1.1) satisfy

(2.9) u'(X, 0) = V'(X,0)

and
(2.10) E,,[u'](O) <5 Cexp(-K/c@

The condition (2.9) is imposed for the sake of simplicity. As long as u.,(x, 0) satisfies (2.6)
and (2.7), with v being replaced by u•, the same conclusion should be obtained.

Lemma 2.2 Suppose (2.9) and (2.10) are satisfied. Then, for any T satisfying 0 < T <
F~ve•exp(K/e), the solution to (1.1) satisfies

(2.11) sup fu'(x, t)- u'(x, 0)1 dx < (F G) )/2½(s+1).
O<_t<T0

Using Nirenberg's inequality and Lemmas 2.1 and 2.2, we can show

Theorem 2.3 If s > 1, then the difference in the L' norm between u' and v' is 0(6(3-1))

for at least 0 < t < F,,vC exp(K/c), where Frm = min{F, FJ}.
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3 Numerical examples

We give a numerical exmaple of the soft loading case to confirm the results in the previous
section. We introduce the transform

p= fu(xt)dx, q = u,

similar to Pego's [14]. Then, (1.1) becomes

(3.1) Pt = vp:x - rlqx + a(q) - P,

qt = PXX

The boundary conditions for p and q become

(3.2) p(,t) = 0, p(O,t) = 0,
(q2 (0,t) = 0, q.(1,t) = 0.

For the initial condition, we consider the case when

(3.3) p(x,0) = 0, q(x,0) = Cf(x),

where C is a parameter representing the magnitude of initial data.
As an example, we consider the case when c = 0.01, v = 1.0, and the initial data for

the parabolic equation and for (3.1) are given, respectively, by

v(x, 0) = C(cos 21rx + cos 9irx),

p(X,0) = 0, q(x,0) = v(X,0).

For C we gave the following values:

C = 1.0, 0.5, 0.1,0.01,0.001.

One of the reasons why we change the magnitude of the initial data is to see how this
influences the metastable states. We should note that for either choice of C above, the
conditions (2.9) and (2.10) are not satisfied. Nevertheless, when C = 1.0, 0.5, 0.1, v and q
have reached the same metastable state in each case. Here, we show the numerical results
of C = 0.1, 0.01 only. In Figures 3.1 and 3.2 we show how v and q evolve for 0 < t < 10
and then in Figures 3.3 and 3.4 we show the profiles of v and q at t = 1000. We use the
solid lines for v and the gray lines for q. When these lines overlap, we see only the gray
lines. When C = 0.1, they agree at least to 10-' at t = 1000 and this agreement continues
at least until t = 10000. In these figures, the values of x should be multiplied by 0.01.
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Figure 3.3. v and q at t = 1000 for C = 0.1.
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Figure 3.4. v and qat t =1000 for C =0.01.
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4 Local existence in multidimensional case

Dunn and Serrin [61 modified the Korteweg theory and derived the following set of equations
for thf. conservation of mass, the balance of linear momentum, the balance of energy, and
the Clausius-Duhem inequality:

pt + div(pu) = 0.
Du

pD- = divT,
(4.1) De(4)pD= T L - divq + divw,

Dr/ q-(grad0) >0,pO-D7 + divn + q --gad) 0
Dt 0

where = f, + u Vf andDt

1. p = p(x, t) is the density of the fluid at the point x at time t,

2. u = u(x, t) is the velocity of flu d,

3. 9 = 0(x, t)(> 0) is the absolute temperature,

4. e = e(x, t) is the specific internal energy per unit mass,

5. 17 = 77(x, t) is the specific entropy per unit mass,

6. T = T(x, t) is the Cauchy stress tensor,

7. q = q(x, t) is the heat flux vector,

8. L =gradu.

The main difference with the classical thermodynamics is the divw term and w is called the
interstitial work flux representing spacial interactions of longer range. They have proved
that for a given Helmholtz free energy 01(p, 0, d), the following forms of w and T

w =pt•bd+w,
(4.2) W=Pd+*

T = (-p', +±pd. ibd + p2 V. 4'd)I -pd ® VId

are compatible with (4.Id). here, pV),(p, 0, 0) is the pressure and V is the "static" portion
of the interstitial work flux w. They have shown that if the material possesses a center of
symmetry, * = 0. In what follows, we consider the materials which posess the center of
symmetry. They also have ob-. ved that the classical forms of viscosity and conductivity
tensors are compatible.
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In this note we state a result concerning the existence of a unique locdl smooth solution
in the two-dimensional isothermal motion of the INorteweg type materials wherw the viscous
effect is also included. The 3-dimensional case can be discussed similarly. In what follows.
we state the assumptions on the Helmholtz free energy and derive the system that we shall
discuss. We assume that the Helmholtz free energy is given by

(4.3) •' = F(p) + v-(p2 + p'),

where F is a smooth function of p and v is a positive constant. This choice is to make the
terms appearing in (4.4) as simple as possible, yet to reflect the effect of the higher order
terms of p. 1

1
With the choice the Helmholtz free energy given in (4.3) and with A =-•k, the system

then becomes
Pt + (pu) 1 + (pV) = 0,

(4.4) (pu)j + (pu'), + (pu)V)Y (T11). + (T,2)",

(PV)t + (puv). + (pv'),, (T2,1 ) + (T2)2,,

where u and v are the x and y component of velocity and

T TT I T12 
2

(4.5)T2T2

= {-p+-+(p 2+ )+vpAPIp I-v P1  + V,

(4.6) p = p F (p),

and
V V1- I7V1 22

(4.7) V2 V 22
ui{(gradu) + (gradu)T - 3(divu)I}.

Here, I is the unit rank-two tensor and a superscript T denotes the transpose of a tensor.
Since we discuss the existence of a local solution, we do not need the monotonicity of the
pressure on p. Further computation simplifies the divT term

(4.8) divT = -Vp + u'pV(Ap) + divV.

We discuss the local existence for the pure initial value problem of (4.4) with the initial
data given by
(4.9) (p,u,v)(X,y,0) = (pO, Uo, Vo)(X,y).

'Another reasonable choice ic to change the last term in (4.3) with _(P2 + P2 ). Although this choice
may be physically more realistic, mathematically it is more cumbersome to handle. For example, the
expression for divT is very complicated. Therefore, we do not discuss this case (See (4.8)).
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We assume that the initial data satisfy

(4.10) (Po - )io, uo, vo) E Hk(R'), Ao > 6>0,

where k > 4 and )o > 0 is a positive constant. Denote by I I- I" iIl tue 2 norm and

by Ilk the k-th order Sobolev norm. Set

IIW-12 (IIW(t/11 + IVp( + 10 (lIVU(t)112 + IIVv(t)112)

O<t<T

and
IW111k = Z II&VW112,

where w - (p, u, v). The main result is stated as follows.

Theorem 4.1 For any initial data (po, Uo, vo) such that po >_ 6 > 0 and (po - fro, uo, vo) E
Hk(R 2) (k > 4) where r5o > 0 is a constant, there exists a T > 0 such that in t E
[0, T], the Cauchy problem (4.4), (4.9) has a unique solution (p, u, v) such that p - 0-o E
L-Q([0,T];Hk+1(R 2)) and (u,v) E L0([0,T];H k(R 2 )) and

IIWl1 < CkIlwoll, + IlpoI1k+i.

Since the linearized problem of (4.4), (4.9) is not of any classical type, the existence of
solutions is not known even for the linearzed problem. We prove the existence of solutions
for the linearized problem by establishing an energy estimate for the dual problem and
then using the dual argument.
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